Multiresolution models for nonstationary spatial covariance functions
نویسندگان
چکیده
Many geophysical and environmental problems depend on estimating a spatial process that has nonstationary structure. A nonstationary model is proposed based on the spatial field being a linear combination of a multiresolution (wavelet) basis functions and random coefficients. The key is to allow for a limited some number of correlations among coefficients and also to use a wavelet basis that is smooth. When approximately 6 % nonzero correlations are enforced, this representation gives a good approximation to a family of Matern covariance functions. This sparseness is important not only for model parsimony but also has implications for the efficient analysis of large spatial data sets. The covariance model is successfully applied to ozone model output and results in a nonstationary but smooth estimate.
منابع مشابه
Spatial Modelling Using a New Class of Nonstationary Covariance Functions.
We introduce a new class of nonstationary covariance functions for spatial modelling. Nonstationary covariance functions allow the model to adapt to spatial surfaces whose variability changes with location. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the spatial surface is controlled by a parameter, freeing one from fixing th...
متن کاملPARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree DOCTOR OF PHILOSOPHY in STATISTICS
Recent work in the areas of nonparametric regression and spatial smoothing has focused on modelling functions of inhomogeneous smoothness. In the regression literature, important progress has been made in fitting free-knot spline models in a Bayesian context, with knots automatically being placed more densely in regions of the covariate space in which the function varies more quickly. In the sp...
متن کاملA Generalized Convolution Model for Multivariate Nonstationary Spatial Processes
We propose a constructive method for specifying flexible classes of nonstationary stochastic models for multivariate spatial data. The method is based upon convolutions of spatially varying covariance functions and produces mathematically valid covariance structures. This method generalizes the convolution approach suggested by Majumdar and Gelfand (2007) to extend multivariate spatial covarian...
متن کاملLocal Likelihood Estimation for Covariance Functions with Spatially-Varying Parameters: The convoSPAT Package for R
In spite of the interest in and appeal of convolution-based approaches for nonstationary spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-based models are highly flexible yet notoriously difficult to fit, even with relatively small data sets. The general lack of pre-packaged options for model fitting makes it difficult to compare new methodology i...
متن کاملEstimating Spatial Covariance using Penalized Likelihood with Weighted L1 Penalty
In spatial statistics, estimation of large covariance matrices are of great importance because of their role in spatial prediction and design. The traditional approaches typically assume that the spatial process is stationary, the covariance function takes some well known parametric form, and estimates the parameters of the covariance functions using likelihood based methods. In this paper we p...
متن کامل